Effects of Colloidal Nanosilica on Epoxy-based Nanocomposite Coatings

Authors

  • M. Parimalam Section of Chemical Engineering Technology, University of Kuala Lumpur, Alor Gajah, Alor Gajah, Melaka, Malaysia.
  • M. R. Islam Section of Chemical Engineering, Malaysian Institute of Chemical and Bioengineering Technology, Alor Gajah, Melaka, Malaysia.
  • N.M. Rashidi Malaysia France Institute, Universiti of Kuala Lumpur, Bangi, Malaysia.
  • R. Yunus Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Gambang, Malaysia.
Abstract:

Epoxy-based nanocomposites were fabricated with different content of colloidal silica nanoparticles such as 10.0, 20.0 and 30.0 wt %, through solution casting. The covalent bonding interfaces, resulting from a ring-opening reaction between silica nanoparticles and epoxy matrix were confirmed by the Fourier transform (FT-IR) infrared spectroscopy. These nanocomposites were characterized for thermal stability, glass transition temperature and adhesive properties using thermogravimetric analyzer (TGA), differential scanning calorimeter (DSC) and cross-cut tape test. In addition, chemical resistance was assessed by immersing the films in different chemical solution (acid, alkali and salt solution) for 21 days. It was found that the properties of the nanocomposites were increased proportionally to the content of silica nanoparticles up to a certain amount of loading. After that the properties were decreased. The surface morphology of the nanocomposites was observed by scanning electron microscopy (SEM), which showed that the silica nanoparticles distributed uniformly. In addition, the nanocomposites were studied on UV radiation absorption by UV-Vis spectrophotometer. Excellent UV radiation was noticed by the nanocomposite films. The oxygen transmission rate (OTR) and water contact angle (WCA) testing of the nanocomposite films was also impressive.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Epoxy-based Flame Retardant Nanocomposite Coatings: Comparison Between Functions of Expandable Graphite and Halloysite Nanotubes

Whis work presents a study on the flammability of epoxy coatings containing two types of nano-scale fillers as potential flame retardants: expandable graphite (EG) and halloysite nanotubes (HNTs). Both nanocomposites are prepared by incorporation of the same amount of nanofiller into the epoxy resin for the sake of comparison. Fire retardant nanocomposite coatings are cured through a two-stage ...

full text

TiC-based nanocomposite coatings as electrical contacts

This Thesis concerns the advanced surface engineering of novel TiC-based nanocomposite and AgI electrical contact materials. The objective is to make industrially applicable coatings that are electrically conductive and wear-resistant, and have a low coefficient of friction. I have studied electrical contact systems consisting of a Cu substrate with a Ni diffusion barrier and loading support, a...

full text

Effects of nano silica on the Anticorrosive properties of epoxy coatings

In this study a series of epoxy/silica nanocomposites were prepared by using nano silica particles which had different surface modifications. The morphology of the nanocomposite coatings was characterized by scanning electron microscopy SEM. The effects of the hydrophilic and hydrophobic feature of the nano particles on the Tg and anticorrosive properties of nanocomposite coatings were evaluate...

full text

Synthesis and Characterization of Colloidal Nanosilica via an Ultrasound Assisted Route Based on Alkali Leaching of Silica Fume

Colloidal nanosilica is currently being produced by various methods which are mainly high energy intensive and/or not environmentally friendly. It is therefore essential to develop new energy-efficient and environmentally friendly technologies. This paper introduces a new ultrasound assisted route based on alkali leaching of silica fume for synthesis of colloidal silica nanoparticles. The ef...

full text

Nanocomposite coatings based on quaternary metal- nitrogen and nanocarbon systems

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . v LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 12  issue 2

pages  71- 82

publication date 2019-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023